Working with Advanced Fractions

Upper Elementary

Multiples Chart

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

List your common multiples.

Fraction Task Cards Answer Sheet

Card \#

Equivalent Fractions

A-1

Concept Numerator: The number above the fraction bar in a fraction Denominator: The number below the fraction bar in a fraction.

Operations

1) $\frac{4}{5} \quad$ 2) $\frac{6}{7}$
2) $\frac{3}{4}$
3) $\frac{5}{7}$

Drill

A-2

Operations

1) $\frac{1}{3}$
2) $\frac{1}{2}$
3) $\frac{1}{3}$
4) $\frac{1}{2}$

Drill Tristan has 3 Nickels (15¢), 9 dimes (90¢) and 3 Quarters (75¢) for a total of 15 coins or \$1.80

A-3
Operations

1) 1
2) $\frac{1}{2}$
3) $\frac{7}{9}$
4) $\frac{1}{10}$

Drill

A-4

Operations

1) $\frac{1}{2}$
2) 1
3) $\frac{2}{3}$
4) $\frac{5}{7}$
Drill

A-5

Operations
$\begin{array}{lll}\text { 1) } 1 & \text { 2) } 1 & \text { 3) } \frac{5}{6}\end{array}$
4) $\frac{7}{9}$

Drill
Isaac made 4 2-point shots (8 points) and 8 1-point shots (8 points) for a total of 12 shots and 16 points.

A-6

Operations

1) $\frac{7}{10}$
2) $\frac{3}{4}$
3) $1 \frac{1}{3}$
4) $1 \frac{2}{5}$

Drill

A-7
Operations

1) $\frac{8}{9}$
2) $\frac{3}{4}$
3) 3
4) 3
Drill
Yes, there will be enough because $6+2+6+6=20$.

A-8

Concept 20, 40, 60, 80, 100
Operations
$\begin{array}{llll}\text { 1) } 1 \frac{1}{10} & \text { 2) } 1 \frac{1}{16} & \text { 3) } 1 \frac{5}{14} & \text { 4) } 1 \frac{1}{18}\end{array}$
Drill $\frac{1}{2}$ pound
Operations

1) $\left.1 \frac{4}{9} \quad 2\right) \frac{17}{20}$
2) 2
3) $\frac{4}{15}$

Drill

Operations \quad 1) $\frac{11}{12} \quad$ 2) $1 \frac{5}{16} \quad$ 3) $1 \frac{4}{15} \quad$ 4) $1 \frac{4}{11}$

Drill Trenton will reach his goal of 50 push-ups on Tuesday of the following week.

A-11

Operations

1) $\frac{1}{2}$
2) $\frac{9}{13}$
3) 1
4) $\frac{15}{16}$

Drill
Normally Little Red Riding Hood takes home 3 pies, because half of the normal 6 pies is 3 pies. But today, 2 pies were eaten, so she only takes home half of the remaining 4 pies, or 2 pies. The difference is one pie.

A-12

Operations
Drill
$\begin{array}{llll}\text { 1) } \frac{6}{7} & \text { 2) } 1 & \text { 3) } 2 & \text { 4) } 1 \frac{1}{4}\end{array}$
8 large sections $\times 4$ small sections $=32$ sections total.
$\frac{8}{32}=\frac{2}{8}=\frac{1}{4}$. Sally the spider is working on a total of $\frac{1}{4}$ of her full web.

Multiplicative Identity

B-1

Operations
Drill

1) $4 \frac{2}{3}$
2) $8 \frac{5}{8}$
3) $4 \frac{2}{5}$
4) $2 \frac{6}{7}$

You and your friends buy 2 packages, and eat 3 tacos each. 2 packages, allows for 12 tacos, and 12 is divisible by 4.

Concept
Operations
Drill

1) $\frac{6}{14}$
2) $\frac{9}{21}$
3) $\frac{12}{28}$
4) $\frac{15}{35}$
5) $9 \frac{1}{7}$
6) $2 \frac{1}{5}$
7) $6 \frac{5}{8}$
8) $7 \frac{1}{2}$

Caleb and Dominic will both be at the starting point in 24 minutes. Caleb will have completed 3 laps and Dominic will have completed 4.24 is the lowest common multiple of 6 and 8 .

B-3

Concept
Operations
Drill

1) $\frac{2}{12}, \frac{3}{18}, \frac{4}{24}, \frac{5}{30}$ 2) $\frac{2}{16}, \frac{3}{24}, \frac{4}{32}, \frac{5}{40}$ 3) $\frac{2}{10}, \frac{3}{15}, \frac{4}{20}, \frac{5}{25}$ 4) $\frac{2}{6}, \frac{3}{9}, \frac{4}{12}, \frac{5}{15}$
2) $7 \frac{1}{4}$
3) $2 \frac{1}{3}$
4) $2 \frac{3}{10}$
5) $9 \frac{5}{7}$

36 books. 36 is the lowest common multiple of 3,4 and 9 .

B-4

Concept
Operations
Drill

1) $\frac{4}{6}, \frac{6}{9}, \frac{8}{12}, \frac{10}{15} \quad$ 2) $\frac{4}{10}, \frac{6}{15}, \frac{8}{20}, \frac{10}{25}$ 3) $\frac{4}{14}, \frac{6}{21}, \frac{8}{28}, \frac{10}{35}$ 4) $\frac{4}{18}, \frac{6}{27}, \frac{8}{36}, \frac{10}{45}$
2) $6 \frac{7}{8}$
3) $\frac{2}{9}$
4) $4 \frac{5}{6}$
5) $4 \frac{1}{7}$

The large wheel will go around 5 times and the small wheel will go around 8 times.

Concept
Operations
Drill

1) $\frac{6}{10}, \frac{9}{15}, \frac{12}{20}, \frac{15}{25}$ 2) $\frac{14}{16}, \frac{21}{24}, \frac{28}{32}, \frac{35}{40}$ 3) $\frac{10}{12}, \frac{15}{18}, \frac{20}{24}, \frac{25}{30}$ 4) $\frac{18}{20}, \frac{27}{30}, \frac{36}{40}, \frac{45}{50}$
2) 3
3) 7
4) 9
5) 2

The slower light blinks 10 times per minute, or once every 6 seconds. The faster light blinks 12 times per minute, or once every 5 seconds. This means that they will blink at the same time after 30 seconds, which is the lowest common multiple of 5 and 6 .

B-6

Operations
Drill

1) 1
2) 5
3) 4
4) 8

Erich and Evan would meet on the soccer field again after 20 days. 20 is the lowest common multiple of 4 and 5.

Operations
Drill
$\begin{array}{lll}\text { 1) } 10 \frac{7}{10} \text { 2) } 2 \frac{7}{8} & \text { 3) } 4 \frac{3}{4} & \text { 4) } 7 \frac{5}{6}\end{array}$
The Bells at St. Mary's toll 5 times per minute, or once every 12 seconds. The Bells at St, Jude's toll 6 times per minute, or once every 10 seconds. The Bells at St. Joseph's toll 3 times per minute, or once every 20 seconds. They will all toll at the same time after 60 seconds, because 60 is the lowest common multiple of 10, 12 and 20.

B-8

Concept
Operations

1) $\mathrm{GCF}=3, \frac{3}{4}$
2) $\mathrm{GCF}=4, \frac{1}{4}$
3) $\mathrm{GCF}=10, \frac{1}{3}$
4) $\mathrm{GCF}=7, \frac{3}{4}$

Drill

1) $3 \frac{1}{12} \quad$ 2) $8 \frac{2}{5}$
2) $6 \frac{1}{6}$
3) $7 \frac{3}{7}$

The smallest amount of hot dogs Trish can buy is 40 hot dogs. That would be 4 packages of hot dogs and 5 packages of buns.

B-9

Concept

1) $\mathrm{GCF}=6, \frac{1}{2}$
2) $\mathrm{GCF}=8, \frac{1}{2}$
3) $\mathrm{GCF}=5, \frac{2}{5}$
4) $\mathrm{GCF}=8, \frac{4}{5}$

Operations
$\begin{array}{ll}\text { 1) } 3 \frac{9}{10} & \text { 2) } 3 \frac{4}{5}\end{array}$
3) 6
4) $10 \frac{1}{5}$

Drill It will be 10 days before the two play on the same day. 10 is the lowest common multiple of 2 and 5 .

B-10

Concept
Operations
Drill

1) $\mathrm{GCF}=6, \frac{1}{3}$
2) $\mathrm{GCF}=4, \frac{1}{5}$
3) $\mathrm{GCF}=15, \frac{1}{3}$
4) $\mathrm{GCF}=7, \frac{1}{4}$
5) $3 \frac{7}{10}$
6) $10 \frac{3}{4}$
7) $6 \frac{5}{6}$
8) $4 \frac{7}{8}$

The harp and the goose will both produce on the same day after 28 days. 28 is the lowest common multiple of 4 and 7.

B-11

Concept

Operations

1) $\frac{4}{14}, \frac{6}{21}, \frac{8}{28}, \frac{10}{35}$ 2) $\frac{8}{18}, \frac{12}{27}, \frac{16}{36}, \frac{20}{45}$
2) $\frac{6}{20}, \frac{9}{30}, \frac{12}{40}, \frac{15}{50}$
3) $\frac{6}{10}, \frac{9}{15}, \frac{12}{20}, \frac{15}{25}$ 5) $\frac{2}{3}$
4) $\frac{3}{4}$
5) $\frac{4}{7}$
6) $\frac{1}{2}$

Drill

1) $\frac{11}{12}$
2) $1 \frac{5}{16}$
3) $1 \frac{4}{15}$
4) $1 \frac{4}{11}$

There will be 24 guests at the party. Kousika's mother has bought enough party favors for this many people. 2 packages of 12 balloons is 24 balloons, 3 packages of 8 hats is 24 hats, and 8 packages of 3 rings is 24 rings.

B-12

Concept

1) $\frac{10}{24}, \frac{15}{36}, \frac{20}{48}, \frac{25}{60}$
2) $\frac{10}{12}, \frac{15}{18}, \frac{20}{24}, \frac{25}{30}$,
3) $\frac{6}{26}, \frac{9}{39}, \frac{12}{52}, \frac{15}{65}$
4) $\frac{6}{34}, \frac{9}{51}, \frac{12}{68}, \frac{15}{85}$
5) $\frac{1}{4}$
6) $\frac{3}{11}$
7) $\frac{2}{3}$
8) $\frac{3}{4}$

Operations

1) $1 \frac{5}{8}$
2) $2 \frac{1}{5}$
3) $1 \frac{4}{7}$
4) $1 \frac{4}{10}$

Drill Mary, Jack and Prince Charming would all take their animals to the field on the same day after 30 days. 30 is the lowest common multiple of 3,5 , and 2 .

Addition and Subtraction With Unlike Denominators

C-1

Operations

1) $\frac{7}{12} \quad$ 2) $\frac{1}{10}$

Drill Sara has filled her bag the most with $\frac{4}{5}$ or $\frac{8}{10}$
C-2

Operations

1) $\frac{3}{4}$
2) $\frac{3}{16}$
3) $1 \frac{4}{15} \quad$ 4) $1 \frac{4}{9}$

Drill
13 squares are painted white.
C-3

Concept

Operations
Drill

1) $100=2 \cdot 2 \cdot 5 \cdot 5$
2) $54=2 \cdot 3 \cdot 3 \cdot 3$
3) $64=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$
4) $108=2 \cdot 2 \cdot 3 \cdot 3 \cdot 3$
5) $1 \frac{2}{5}$
6) $\frac{1}{6}$
7) $\frac{4}{15}$
8) $\frac{2}{3}$

Monday, because they both swim $\frac{1}{3}$ of their total amount of laps on that day.
C-4

Concept

1) $350=2 \cdot 5 \cdot 5 \cdot 7$
2) $180=2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$
3) $42=2 \cdot 3 \cdot 7$
4) $90=2 \cdot 3 \cdot 3 \cdot 5$
5) $99=3 \cdot 3 \cdot 11$

Operations

1) $\frac{2}{3}$
2) $\left.1 \frac{7}{15} \quad 3\right) \frac{7}{12}$
3) $\frac{11}{42}$

Drill Alex is correct. Alex ate $\frac{5}{8}$ of his pizza, which is $\frac{15}{24}$. Justin only ate $\frac{6}{12}$ of his pizza, which is less than $\frac{12}{24}$.

C-5
Concept

1) 1296
2) 3125
3) 81
4) 256

Operations
$\begin{array}{ll}\text { 1) } \frac{16}{35} & \text { 2) } \frac{1}{30}\end{array}$
3) $\frac{13}{14}$
4) $1 \frac{1}{33}$

Drill
Caitlin read $\frac{1}{8}$ of the book on the $4^{\text {th }}$ day. $\frac{90}{720}=\frac{1}{8}$

Concept

1) $84=2 \cdot 2 \cdot 3 \cdot 7=2^{2} \cdot 3 \cdot 7$
2) $120=2 \cdot 2 \cdot 2 \cdot 3 \cdot 5=2^{3} \cdot 3 \cdot 5$
3) $60=2 \cdot 2 \cdot 3 \cdot 5=2^{2} \cdot 3 \cdot 5$
4) $50=2 \cdot 5 \cdot 5=2 \cdot 5^{2}$
5) $400=2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5=2^{4} \cdot 5^{2}$
6) $90=2 \cdot 3 \cdot 3 \cdot 5=2 \cdot 3^{3} \cdot 5$

Operations

$\begin{array}{ll}\text { 1) } 1 \frac{9}{40} & \text { 2) } \frac{5}{12}\end{array}$
3) $\frac{1}{12}$
4) $\frac{9}{9}=1$

Drill Suzie found the lowest common multiple of all the fraction denominators to be 24 . She converted each fraction so that 24 was in the denominator, and put them in the order of $\frac{1}{4}, \frac{8}{24}, \frac{3}{6}, \frac{2}{3}, \frac{3}{4}$.

C-7
Concept

1) $500=2 \cdot 2 \cdot 5 \cdot 5 \cdot 5=2^{2} \cdot 5^{3}$
2) $200=2 \cdot 2 \cdot 2 \cdot 5 \cdot 5=2^{3} \cdot 5^{2}$
3) $1323=3 \cdot 3 \cdot 3 \cdot 7 \cdot 7=3^{3} \cdot 7^{2}$
4) $224=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 7=2^{5} \cdot 7$
5) $2025=3 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdot 5=3^{4} \cdot 5^{2}$
Operations
Drill
6) $1 \frac{11}{21}$
7) $1 \frac{1}{3}$
8) $\frac{1}{4}$
9) $\frac{1}{4}$
$\frac{7}{8}+\frac{3}{4}+\frac{3}{4}=\frac{19}{8}=2 \frac{3}{8}$ cups of dry ingredients

C-8

Operations
Drill
$\begin{array}{ll}\text { 1) } 1 \frac{3}{10} & \text { 2) } \frac{1}{12}\end{array}$
3) $\frac{1}{5}$
4) $1 \frac{29}{55}$

Simon will need to order flower tomorrow. He used 16 bags on the first day, 16 bags on the $2^{\text {nd }}$ day, and should use 16 bags tomorrow. He will then only have 8 bags left, and will probably need 16 bags, therefore he should order flower tomorrow.

C-9

Concept
Operations
Drill

C-10

Drill

1) 135
2) 64
3) 231
4) $96 \quad$ 5) 990
5) 910
6) 1
7) 1
8) 5
9) 5
$\begin{array}{llllll}\text { 1) } 54 & \text { 2) } 180 & \text { 3) } 140 & \text { 4) } 240 & \text { 5) } 60 & \text { 6) } 56\end{array}$
10) $\frac{1}{2}$
11) 1
12) 4
13) 3

Cinderella is correct. $\frac{3}{4}$ of 36 is 27 . They both have 27 dances.

Chris lives higher up. Matthew lives on the $20^{\text {th }}$ floor, which is $\frac{8}{10}$ the full height of the building. Chris lives at $\frac{9}{10}$, so he is higher.

Multiplication of Fractions

D-1
Concept $\quad 10$ times; This is because the probability of the spinner landing on green is 1 in 3. Therefore, the same probability can be extrapolated to be 10 times in 30.

1) $\frac{2}{3}$
2) $\frac{4}{5}$
3) $\frac{1}{2}$
4) $\frac{2}{3}$

Drill
$\frac{2}{5}+\frac{1}{2}=\frac{9}{10}$ of a cup of flour.
D-2

Concept

Operations
Drill
the probability of rolling an odd number each time you roll the dice is 3 in 6 (or 1 in 2). If you roll the dice 36 times, the probability of rolling an odd number is 18 in 36 .

1) $1 \frac{3}{5}$
2) $2 \frac{1}{2}$
3) 2
4) $1 \frac{1}{7}$

No, Miles has more than a full bin's worth of trash. $\frac{2}{6}+\frac{3}{4}=\frac{4}{12}+\frac{9}{12}=\frac{13}{12}=1 \frac{1}{12}$

D-3
Concept Yes, the game is fair, because there is a $\frac{2}{6}$ or $\frac{1}{3}$ chance both for rolling above a 4 or below a 3.

Operations

1) $\frac{1}{8}$
2) $\frac{1}{15}$

Drill Sasha has $\frac{16}{36}$ or $\frac{4}{9}$ of the whole box left.

D-4
Concept

1) 1 in 2
2) 2 in 4
3) 6 in 36
4) 1 in 52

Operations

1) $\frac{1}{48}$
2) $\frac{1}{30}$
3) $\frac{1}{12}$
4) $\frac{3}{16}$

Drill There were 3 tissues in the trash.

D-5
Concept $\quad 5$ times out of 40 the spinner should land on 5 .
Operations
Drill

1) $\frac{1}{10}$
2) $\frac{1}{9}$
3) $\frac{1}{4}$
4) $\frac{4}{21}$
5) $\frac{9}{40}$
6) $\frac{1}{6}$

28 license plates are from Texas
D-6
Concept $\quad \frac{1}{2}, \frac{1}{2}, \frac{1}{4}$
Operations
Drill

1) $\frac{2}{7}$
2) $\frac{5}{18}$
3) $\frac{4}{15}$
4) $\frac{7}{32}$
5) $\frac{7}{12}$
6) $\frac{9}{16}$
Drill
$\frac{3}{8}$ of a yard.

D-7
Operations

1) $\frac{3}{10} \quad$ 2) $\frac{2}{3}$
2) $\frac{1}{2}$
3) $\frac{4}{7}$
4) $\frac{3}{10}$
5) $\frac{1}{3}$
Drill $\frac{4}{5}+\frac{3}{4}=\frac{16}{20}+\frac{15}{20}=\frac{31}{20}=1 \frac{11}{20}$ miles

D-8

Concept
$\frac{2}{8}=\frac{1}{4} \quad$ a) $\frac{1}{4}$
$\begin{array}{ll}\text { b) } \frac{1}{2} & \text { c) } \frac{1}{4}\end{array}$
Operations
$\begin{array}{ll}\text { 1) } \frac{4}{25} & \text { 2) } \frac{1}{6}\end{array}$
3) $\frac{1}{8}$
4) 1
5) $\left.1 \frac{1}{8} \quad 6\right) \frac{1}{2}$

Drill $\frac{6}{8}+\frac{1}{3}=\frac{18}{24}+\frac{8}{24}=1 \frac{2}{24}=1 \frac{1}{12}$ of a yard of fabric.

D-9

Concept
$0,1, \frac{1}{6}, \frac{1}{2}$
Operations
$\begin{array}{lll}\text { 1) } \frac{1}{3} & \text { 2) } 1 \frac{7}{8} & \text { 3) } \frac{3}{5}\end{array}$
4) $\frac{3}{7}$
5) 1
6) $1 \frac{1}{2}$

Drill
$5 \frac{1}{3}$ of a foot of snow.
D-10
Concept you should draw a yellow cube 20 times, a blue cube 4 times, a pink cube 16 times and a green cube 0 times.
Operations
$\begin{array}{lll}\text { 1) } 1 & \text { 2) } 1 & \text { 3) } 1\end{array}$
4) 1
5) 1
6) 1

Drill
$\frac{6}{10}-\frac{3}{25}=\frac{60}{100}-\frac{12}{100}=\frac{48}{100}=\frac{12}{25}$ of a second.

Division of Fractions

E-1

Operations
Drill
$\begin{array}{ll}\text { 1) } \frac{2}{9} & \text { 2) } \frac{1}{8}\end{array}$
3) $\frac{4}{10}$ or $\frac{2}{5}$
4) $\frac{1}{6}$ $\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$

Concept

Operations
Drill

Concept
Drill

1) $11: 4,11 / 4, \frac{11}{4}$
2) $5: 2,5 / 2, \frac{5}{2}$
$\frac{1}{5}$

Concept

Operations
Drill

E-5

There are 18 cars for the 36 students; which means that for every car, there are 2 students.

1) $1 \frac{1}{5} \quad$ 2) $\frac{3}{8}$
2) $\frac{3}{4}$
3) $\frac{2}{3}$
4) $\frac{3}{4}$
5) $\frac{2}{5}$
$\frac{1}{2} \cdot \frac{2}{8}=\frac{2}{16}=\frac{1}{8}$ of the report is filled with typing.

Concept There are 3 eggs for every person.
There are two toddlers for every toy.
There are 3 footballs for every class.
There are 5 homeworks for every 7 days.
There are 4 sandwiches for each player.

Operations
Drill

1) $1 \frac{1}{3} \quad$ 2) $\frac{3}{7}$
2) $\frac{8}{9}$
3) $\frac{4}{5}$
4) $1 \frac{1}{5}$
5) $\frac{1}{2}$
$\frac{5}{6} \cdot \frac{3}{4}=\frac{15}{24}=\frac{5}{8}$ of a mile.

Concept There are 21 flower stickers and 15 heart stickers.

Operations	1) $\frac{1}{2}$	2) $\frac{4}{7}$	3) $\frac{4}{9}$	4) $\frac{3}{5}$	5) $\frac{3}{10}$	6) $\frac{4}{5}$

Drill No, it is just a coincidence.

E-7

Concept $\quad 12$ fig trees and 4 apple trees
Operations
Drill

1) $\frac{3}{4}$
2) 4
3) $1 \frac{3}{4}$
4) $\frac{15}{16}$
5) $1 \frac{1}{5}$
6) $1 \frac{13}{14}$ $\frac{2}{3} \cdot \frac{5}{8}=\frac{10}{24}=\frac{5}{12}$ of a meter long

E-8

Concept $\quad 9$ black shirts and 6 grey shirts
Operations
Drill

1) $\frac{1}{3}$
2) $\frac{16}{21}$
3) 6
$\begin{array}{ll}\text { 4) } 1 \frac{1}{8} & \text { 5) } \frac{14}{15}\end{array}$
4) $\frac{8}{21}$

He can expect to win 250 times.

Operations With Mixed Fractions

F-1

Concept	$54,81,108,137,162,189$
Drill	Connie originally put 80 pizzas in the oven.

F-2

Concept
Dollars: $9,18,27,36,45,54,63,72,81$
64
Operations

1) $\frac{11}{6}$
2) $\frac{38}{7}$
3) $\frac{11}{3}$
4) $\frac{32}{12}$
Drill
20 people.

Concept

$$
2 \cdot 27=54 \quad 3 \cdot 18=54
$$

Operations

1) $\frac{22}{5}$
2) $\frac{31}{9}$
3) $\frac{25}{3}$
4) $\frac{67}{10}$

Drill There are 16 total members on the team. 8 are good butterfly swimmers, 4 are good breast stroke swimmers, 2 like free-style swimming and 2 are coaches.

F-4

Operations

1) $\frac{1}{2}$
2) $9 \frac{3}{4}$
3) $1 \frac{2}{5}$

Drill 576 total applicants. 288 from US, 144 from China, 72 from Japan, 36 from France, 18 from Australia, and 18 from South America.

Concept
Operations
$\begin{array}{ll}\text { 1) } 1 & \text { 2) } 9\end{array}$
3) 2
4) 4
5) 10
6) 3

Drill

1) $\left.6 \frac{4}{25} \quad 2\right) \frac{21}{33}$
2) $25 \frac{1}{2}$

Drill Each guard received $\frac{1}{6}$ of the bag.

F-6

Operations
$\begin{array}{lll}\text { 1) } \frac{21}{25} & \text { 2) } 3 \frac{51}{63} & \text { 3) } \frac{4}{21}\end{array}$
4) $\frac{45}{192}$

Drill Each had $\frac{2}{9}$ of the pizza.
F-7

Concept
Operations
Drill
\$89,090.91
$\begin{array}{lll}\text { 1) } 2 \frac{1}{24} & \text { 2) } 2 \frac{58}{91} & \text { 3) } 34 \frac{7}{27}\end{array}$
24 cans of dark blue, 40 cans of firehouse red, 16 cans of beige.

Concept The lower end should be $\frac{37}{16}$ of an inch $2 \frac{5}{16}$ lower than the starting point.
Operations
$\begin{array}{lll}\text { 1) } 16 \frac{7}{8} & \text { 2) } \frac{24}{35} & \text { 3) } 10 \frac{8}{15}\end{array}$
Drill
Each charity received $\frac{1}{9}$ of the original collection.
F-9

Concept
Operations
Drill

F-10

Concept The Total population of deer should be 1,728 deer.
Operations
Drill
$\begin{array}{lll}\text { 1) } 5 \frac{17}{56} & \text { 2) } 1 \frac{11}{63} & \text { 3) } 5 \frac{1}{3}\end{array}$

The picture will be $6 \frac{3}{10}$ inches tall.
$\begin{array}{lll}\text { 1) } 6 \frac{11}{32} & 2) 3 \frac{1}{25} & 3) 7 \frac{2}{9}\end{array}$
Cinderella used $\frac{1}{12}$ the amount of her original time to do each of the last three activities.

80 chairs in total. 40 in the parent section, 20 in the children section, 10 in the teacher's section and 10 for the choral-club.

Simplifying With the Multiplicative Identity

G-1

Drill

G-2

Concept

Operations
Drill

Dallas to Fort Worth is approximately 35 miles. Fort Worth to Waco is approximately 85 miles. Waco to Houston is approximately 185 miles.

1) $\frac{1}{6}$
2) $\frac{5}{24}$
3) $1 \frac{5}{7}$
4) $\frac{7}{11}$

The cost for 400 shirts will be $\$ 666.67$.

G-3
Concept
Operations
Drill
4200 feet long, 746 feet high

1) $\frac{1}{24}$
2) $\frac{1}{2}$
3) $\frac{2}{5}$
4) $1 \frac{2}{3}$

Baker should order 48 pounds of apples.
G-4

Operations

1) $\frac{1}{3}$
2) $\frac{1}{5}$
3) $2 \frac{2}{3}$
4) 1

Drill
Jill picked 30 peaches.

G-5

Concept

Operations
Drill

No, Travis should use proportions to scale down the picture. Not subtraction. The poster should actually be 1.5 feet long.
$\begin{array}{ll}\text { 1) } 6 \frac{9}{16} & \text { 2) } 1\end{array}$
3) 8

Concept	1.875 miles		
Operations	1) $\frac{2}{5}$	2) $2 \frac{7}{9}$	3) $2 \frac{2}{9}$

Drill

G-7

Concept
Scale factor is $1: 3$ or $\frac{1}{3}$
Operations $\begin{array}{llll}\text { 1) } 3 \frac{1}{4} & \text { 2) } \frac{3}{32} & \text { 3) } 4 \frac{4}{15}\end{array}$
Drill

Concept
Scale factor is 8: 1 or $\frac{8}{1}$
Operations
$\begin{array}{lll}\text { 1) } 1 \frac{17}{22} & \text { 2) } 5 \frac{7}{10} & \text { 3) } \frac{1}{2}\end{array}$
Drill
They would throw away 250 light bulbs a day.

