Upper Elementary Geometry

Area of Figures Task Cards

The unlicensed photocopying, reproduction, display, or projection of the material, contained in this publication, is expressly prohibited by law.

Copying without express permission from ETC Montessori may result in legal action against you and the organization that employs you.

© 1997, 2000, 2003, 2010, 2013 by ETCmontessori®

877-409-2929

www.ETCmontessori.com

All rights reserved. No part of this publication be reproduced, displayed, or repurposed—in whole or in part—in any form without prior written consent from ETCmontessori®

Other Available ETC Montessori Geometry Materials

Lower Elementary

1st Level Geometry Task Cards with Chart 2nd & 3rd Level Geometry Task Cards Geometry Nomenclature Complete Solution Lower Elementary Attribute Work with Task Cards Square Root Patterns

Upper Elementary

Constructing 3D Archimedean Solids
Constructing 3D Compound Polyhedra
Constructing 3D Kepler-Poinsot Polyhedra
Constructing 3D Platonic Solids
Constructing 3D Pyramids
Constructing 3D Uniform Polyhedra
Geometry with Tangrams and Pattern Blocks
Deriving the Area of Geometric Figures
Understanding Geometric Constructions
Upper Elementary Attribute Task Cards
Upper Elementary Volume Task Cards
Upper Elementary Volume Task Cards
Upper Elementary Geometry Task Cards

Answer Key

Area of Rectangle:

 Card 1:
 20 ft.
 15 ft.
 Not Known

 Area
 A=bh
 201

Alea A-Dii 201

Card 2: 10m 8m Not Known
Area A=bh Base

Card 3: 12ft Not Known 72sqft

Height H=a/b Area

Card 4: 10cm 5cm Not Known
Area A=bh Height

Card 5: 22ft 20ft Not Known

Area A=bh 300 tiles

Card 6: 12ft Not Known 156 sq. ft

Height $H = \frac{a}{b}$ Area

Card 7: 3cm 7cm not known

Area A=bh 36

Card 8: 3ft 4ft not known
Area A=bh 460

Card 9: 5 Not Known 100 sq.ft

Height $H = \frac{a}{b}$ Base

Card 10: 10ft 8ft Not Known

Area A=bh 250 sq ft

 Card 11:
 8in
 60in
 not known

 Area
 A=bh
 h=a/b

Card 12: 22ft Not Known 300 sq. ft

Height $H = \frac{a}{b}$ Base

Area of Parallelograms:

Card 1:	36in	42in	Not Known
	Area	A=bh	3ft

Card 3:12ftNot Known84 sq. ftHeight
$$H = \frac{a}{b}$$
Base

Card 6: Area Not Known 24 sq. ft
$$H = \frac{a}{b}$$
 Area

Card 9: Not Known 38in 2280 sq. ft Base
$$H=\frac{a}{b}$$
 $H=\frac{a}{b}$

Card 10: 9in 6in Not Known Area A=bh
$$H=\frac{a}{b}$$

Card 12: Not Known 16ft 480 sq. ft Base
$$B = \frac{a}{h}$$
 $H = \frac{a}{b}$

Area of a Square:

Card 1:	10cm	10cm	Not Known
	Area	A=bh	$A=s^2$

Card 3: Answers vary depending on objects used Not Known Area
$$A=s^2$$
 4

Card 4:Not KnownNot Known121ftSide
$$\sqrt{s}$$
A=bh

Card 5:10cm10cmNot KnownArea
$$A=s^2$$
 $B=a/h$

Card 6: 7ft 7ft Not Known Area
$$A=s^2$$
 $H=\frac{a}{b}$

Card 7:90ft90ftNot KnownArea
$$A=s^2$$
 $A=bh$

Card 8:Not KnownNot Known
$$25 \text{cm}^2$$
Side $A=\sqrt{s}$ 8 square

Card 10:12ft12ftnot knownArea
$$A=s^2$$
 $A=bh$

Card 11: not known not known
$$25 \text{cm}^2$$

Side $\sqrt{25}$ A=bh

Card 12:
$$9^{1}/_{2}$$
 $9^{1}/_{2}$ Not Known Area $A=s^{2}$ $B=\frac{a}{h}$

Area of a Triangle:

$$A = \frac{b*h}{2}$$

$$A = \frac{b * h}{2}$$

$$A = \frac{b*h}{2}$$

$$A = \frac{b * h}{2}$$

Not Known

$$60 \text{cm}$$

$$A = \frac{b * h}{2}$$

$$A = \frac{b*h}{2}$$

$$A = \frac{b*h}{2}$$

$$A = \frac{b*h}{2}$$

$$A = \frac{b*h}{2}$$

2

$$A = \frac{b*h}{2}$$

$$A = \frac{b * h}{2}$$

Not Known

$$A = \frac{b * h}{2}$$

$$A = \frac{b*h}{2}$$

Area of a Rhombus

Answers vary on Objects being used Card 1: Not Known

Area Base

Card 2: Answers vary in Objects being used Not Known

> Area Length of Sides

Card 3: 8in 10in Not Known

> $A = \frac{Dd}{2}$ Area 6in

900cm² Card 4: 30cm 60cm

900 x 2Long Diagonal altitude 30

Card 5: 4ft 12ft² 6ft

12 *x* 2 **Short Diagonal** 8ft

Cards 6: Answers vary on Objects being used Not Known

> $A = \frac{Dd}{2}$ Side² Area

Card 7: 4ft 6ft Not Known

 $A = \frac{Dd}{2}$ $A = \frac{D}{2}d$ Area

300ft² Card 8: 30ft Not Known $A = \frac{Dd}{2}$ Area x 2

Short Diagonal

Not Known Card 9: 2m 3m

> $A = \frac{Dd}{2}$ $H = \frac{a}{b}$ Area

Card 10: 6m² Not Known 4m

Area x 2 A=bh **Short Diagonal**

Card 11: 24in 16in Not Known

 $A = \frac{Dd}{2}$ Area \$ 17.95

Card 12: 3ft 5ft Not Known

 $A = \frac{Dd}{2}$ **Number of Sandbags** \$ 2.95

Area of a Kite:

Card 1:	Answers Vary on Objects being used	Not Known
---------	------------------------------------	-----------

Area
$$A=\frac{Dd}{2}$$
 $A=s^2$

Area
$$A = \frac{Dd}{2}$$
 A=bh

Area
$$A = \frac{Dd}{2} \qquad \qquad \frac{A}{b} = h$$

Card 4: Not Known 16in
$$72in^2$$
Short Diagonal 72×2

Short Diagonal
$$\frac{72 \times 2}{16}$$
 $A = \frac{Dd}{2}$

Area
$$A = \frac{Dd}{2}$$
 $A = s^2$

Card 6: 3.5m Not Known
$$8.75m^2$$
Long Diagonal $\frac{8.75 \times 2}{}$ $\Delta = \frac{Dd}{}$

Long Diagonal
$$\frac{8.75 \times 2}{3.5}$$
 $A = \frac{Dd}{2}$

Area
$$A = \frac{Dd}{2}$$
 $D = \frac{2A}{d}$

Card 8: Not Known
$$4^{1}/_{2}$$
ft $13^{1}/_{2}$ ft $d=\frac{2A}{D}$ $A=\frac{Dd}{2}$

Card 9: 75m Not Known
$$3250m^2$$

Long Diagonal
$$D = \frac{2A}{d}$$
 $h = \frac{A}{b}$

Area
$$A = \frac{Dd}{2}$$
 D=da

Area
$$A = \frac{Dd}{2}$$
 A=bh

Area
$$2(24in^2) + \frac{bh}{2}$$
 $A = \frac{Dd}{2}$

Area of a Trapezium

Area
$$A = \frac{(B+b)h}{2}$$
 7cm

Area
$$A = \frac{(B+B)h}{2}$$
 Not Known

Height
$$h = \frac{2A}{(B+b)}$$
 17in²

Area
$$A = \frac{(B+b)h}{2}$$
 Not Known

Card 5:
$$\frac{3}{4}$$
 of 8 8in $\frac{1}{2}$ of 8

Area
$$A = \frac{(B+b)h}{2}$$
 Not Known

Height
$$h = \frac{2A}{(B+b)}$$
 36ft

Area
$$A = \frac{(B+b)h}{2}$$
 Not Known

Area
$$A = \frac{(B+b)h}{2}$$
 Not Known

Height
$$H = \frac{2A}{(B+b)}$$
 1000 sq. ft

Area
$$A = \frac{(B+b)h}{2}$$
 Not Known

Area
$$A = \frac{(B+b)h}{2}$$
 Not Known

Area $A = \frac{(B+b)h}{2}$ Not Known

Area of a Quadrilateral

Card 1:	Answers Vary on Objects being used		Not Known
	Area	$A=A\Delta 1 + A\Delta 2$	Major Base
Card 2:	16cm ²	5cm ²	Not Known
Cara 2:	Area	$A = A\Delta 1 + A\Delta 2$	Base
	Aled	$A-A\Delta I + A\Delta Z$	base
Card 3:	48cm ²	18cm ²	66cm ²
	ΑΔ1	$A=A\Delta 1-A\Delta 2$	Height
Card 4:	1,000m	125,000m	Not Known
	Area	$A=A\Delta 1 + A\Delta 2$	240,000m ²
Card 5:	6cm ²	Not Known	14cm ²
	ΑΔ2	$A=A\Delta 1-A\Delta 2$	Hypotenuse
	2	2	
Card 6:	12ft ²	8ft ²	Not Known
	Area	$A=A\Delta 1 + A\Delta 2$	24ft
	165×124	149×184	
Card 7:	2	2	Not Known
	Area	$A=A\Delta 1 + A\Delta 2$	$\frac{165 \times 184}{2}$
Card 8:	$\frac{8\times12}{2}$	Not Known	216ft ²
	2		
	ΑΔ2	$A-A\Delta 1 = A\Delta 2$	216
			12

 $\frac{26\times14}{2}$

 $A=A\Delta 1 + A\Delta 2$

16×18

2

Area

Card 9:

Not Known

 $\frac{16\times14}{2}$

Area of Regular Polygon:

Area

Area
$$A = \frac{Pa}{2} \qquad A = \frac{3(bh)}{2}$$

 $A = \frac{Pa}{2}$

Not Known

A=bh

Card 3:
$$6 \times 10 \text{cm}$$
 10cm Not Known Area $A = \frac{Pa}{2}$ $\frac{A}{b} = h$

Card 4:
 96in
 Not Known

$$672in^2$$

 Apothem
 $\frac{2(672)}{96}$
 $\frac{2(96)}{272}$

Card 5: 8(24in) 20in Not Known Area
$$A = \frac{Pa}{2}$$
 144in

Card 6:Not Known
$$\frac{8ft}{2}$$
 $96ft^2$ Perimeter $\frac{2(96)}{2}$ $A=\frac{Pa}{2}$

Card 7:
$$2^{1}/_{2}$$
 city blocks 1 city block Not Known Area $A = \frac{Pa}{2}$ 1(5)

Card 8: 75cm Not Known 225cm²
Apothem
$$a=\frac{2A}{P}$$
 A=bh

Card 9: 24cm 2.9cm Not Known Area
$$A = \frac{Pa}{2}$$
 $P = \frac{A}{2}$

Card 10:9(24cm)Not Known
$$1728cm^2$$
Apothem $a = \frac{2A}{P}$ 9 equilateral triangles

Card 11:8ft x 65ftNot KnownArea
$$A = \frac{Pa}{2}$$
A=bh

Card 12: Not Known 4ft 84ft²
Perimeter
$$P = \frac{2A}{a}$$
 $\frac{A}{b} = h$

Circumference of a Circle:

- Card 1: 3.14 5cm Not Known Circumference $C=\pi d$ Radius
- Card 2:3.148Not KnownCircumference $C=\pi d$ Apothem
- Card 3:Not Known25cm3.14Circumference $C=\pi d$ 2cm
- Card 4:Not Known22in3.14Circumference $2\pi r$ 120ft
- Card 5: Not Known 6ft 3.14
 Circumference $2\pi r$ 22 Children
- Card 6:Not Known27in3.14Circumference $2\pi r$ $\frac{A}{b} = h$
- Card 7:81.64Not Known3.14Radius $\frac{c}{2\pi} = R$ $2\pi r$
- Card 8:1884ftNot Known3.14Radius $\frac{c}{2\pi} = R$ 26 miles
- Card 9:27.93cmNot Known3.14Radius $\frac{c}{2\pi} = R$ 43.96cm

Area of a Circle:

Card 1: Varies Not Known Varies Area
$$A = \frac{Cr}{2}$$
 A=bh

Card 2:9.43mNot Known1.5mArea
$$A = \frac{Cr}{2}$$
 π Card 3:24.12ftNot Known4ftArea $A = \frac{Cr}{2}$ 3.14

Card 4:
$$2\pi r$$
 Not Known 20cm Area $A = \frac{cr}{2}$ A=bh

Card 5:94.2cm706.5Not KnownRadius
$$r = \frac{2A}{C}$$
D π

Card 6: 113.04in Not Known 18in
$$A = \frac{cr}{2} \qquad \qquad A = \frac{2r}{c}$$

Card 7:3.14Not Known20inArea
$$2\pi r^2$$
 $A = \frac{2r}{C}$

Card 8:3.14Not Known8cmArea
$$\pi r^2$$
 $2\pi r$

Card 9:3.14Not Known1.5mArea
$$\pi r^2$$
 $C=D\pi$

Area of a Sector:

Card 1:
 Not Known

$$\frac{8(\pi)}{2}$$
 $\frac{8}{2}$

 A sector
 A sector = $\frac{lr}{2}$
 A=bh

 Card 2:
 Not Known
 $9\pi \div \frac{1}{4}$
 $9/2$

 A sector
 A sector = $\frac{lr}{2}$
 $9\pi \div \frac{3}{4}$

 Card 3:
 Not Known
 $9\pi \div \frac{3}{4}$
 $9/2$

 A sector
 A sector = $\frac{lr}{2}$
 $9\pi \div \frac{1}{4}$

 Card 4:
 Not Known
 $4(\frac{14\pi}{12})$
 $14/2$

 A sector
 A sector = $\frac{lr}{2}$
 $A=bh$

 Card 5:
 Not Known
 $\frac{56.52}{5}$
 $\frac{56.52}{2\pi}$

 A sector
 A sector = $\frac{lr}{2}$
 56.52

 Card 6:
 Not Known
 $3(\frac{10\pi}{4})$
 $10/2$

 A sector
 A sector = $\frac{lr}{2}$
 $A=\frac{cr}{2}$

 Card 7:
 $\frac{8.5}{2}$
 Not Known
 $\frac{8.5\pi}{2}$

 A sector
 A sector = $\frac{lr}{2}$
 πr^2

A sector = $\frac{lr}{2}$

sector

 $\pi r^2 \\$

Area of Major/Minor Segment

Card 1: Not Known 5.5cm 3cm
Area of Major Segment
$$A = \frac{lr + kh}{2}$$
 $A = \frac{lr - kh}{2}$

Card 2: Not Known 5.5cm 3cm
Area of Minor Segment
$$A = \frac{lr - kh}{2}$$
 $A = \frac{lr + kh}{2}$

Card 3: Not Known Answers Vary on Objects used

Area of Major Segment
$$A = \frac{lr - kh}{2}$$
 $A = \frac{lr + kh}{2}$

Card 4: Not Known 7.07cm 5cm

Area of Minor Segment
$$A = \frac{lr - kh}{2}$$
 $A = \frac{lr + kh}{2}$

Card 5: Not Known 5cm
$$A = \frac{l + kh}{2}$$
Area of Major Segment 7.07cm $A = \frac{l r - kh}{2}$

Card 6:Not Known7.6in
$$A = \frac{lr - kh}{2}$$
Area of Minor Segment5in $A = \frac{lr + kh}{2}$

Card 7: Not Known 10cm
$$A = \frac{lr + kh}{2}$$
Area of Major Segment 8cm $A = \frac{lr - kh}{2}$

Card 8:Not Known4cm
$$A = \frac{lr + kh}{2}$$
Area of Major Segment6cm $A = \frac{lr - kh}{2}$

Area of an Annulus:

Card 1:	Not Known	Varies	Varies
	A annulus	$A=\pi(R^2-r^2)$	A=bh
Card 2:	Not Known	4/2	1/2
	A annulus	$A=\pi(R^2-r^2)$	R ²
Card 3:	Not Known A	60/2	15
	annulus	$A=\pi(R^2-r^2)$	A=bh
Card 4:	188.4in ²	Not Known	2/2
	Radius of Large Circle	$R^{2}\frac{Aa+r^{2}}{\pi}$	$A=\pi(R^2-r^2)$
Card 5:	Not Known	5cm	2.5cm
	A annulus	$A=\pi(R^{2-}r^2)$	$\frac{5\pi}{2}$
Card 6:	Not Known	$\frac{11.5}{2}$	1.5
	A annulus	$A=\pi(R^2-r^2)$	$A = \frac{Cr}{2}$
Card 7:	Not Known	πr^2	$\frac{12}{2}$
	A annulus	$A=\pi(R^2-r^2)$	$\frac{2.5}{\pi}$
Card 8:	Not Known	$\frac{3}{2}$	$\frac{2}{2}$
	A annulus	$A=\pi(R^2-r^2)$	3.14
Card 9:	Not Known	2.5 2	. <u>75</u> 2
	A annulus	$A=\pi(R^2-r^2)$	$\frac{2.5}{2} + \frac{.75}{2}$

Area of Irregular Polygon:

Card 1:	2 Area	Varies $2\binom{bh}{2}$	Not Known A=bh
Card 2:	<i>Varies</i> Area	Varies $2\binom{bh}{2}$	Not Known A=bh
Card 3:	Sum of all triangles Area	Varies $2\binom{bh}{2}$	Not Known A/b=h
Card 4:	Sum of all triangles Area	varies $2\binom{bh}{2}$	Not Known $\frac{Pa}{2}$
Card 5:	Sum of all triangles Area	Varies $2\binom{bh}{2}$	Not Known A=bh
Card 6:	Sum of all triangles Area	Varies $2\binom{bh}{2}$	Not Known $\frac{Pa}{2}$
Card 7:	Sum of all triangles Area	Varies $2\binom{bh}{2}$	Not Known A=bh
Card 8:	Sum of all triangles Area	Varies $2\binom{bh}{2}$	Not Known A=bh
Card 9:	Sum of all triangles Area	Varies $2\binom{bh}{2}$	Not Known A/b=h

Notes

Notes

ETC Montessori®

(877) 409-2929 www.ETCmontessoriOnline.com 603 Chedworth Dr. • Houston • TX • 77062