Upper Elementary Geometry

(1)
atMONTESSORI

Volume of Figures Task Cards

The unlicensed photocopying, reproduction, display, or projection of the material, contained in this publication, is expressly prohibited by law. Copying without express permission from ETC Montessori may result in legal action against you and the organization that employs you.
© 1997, 2000, 2003, 2010, 2013 by ETCmontessori ${ }^{\ominus}$

877-409-2929

www.ETCmontessori.com

All rights reserved. No part of this publication be reproduced, displayed, or repurposed-in whole or in part-in any form without prior written consent from ETCmontessori ${ }^{\ominus}$

Other Available ETC Montessori Geometry Materials

Lower Elementary

1st Level Geometry Task Cards with Chart
2nd \& 3rd Level Geometry Task Cards
Geometry Nomenclature Complete Solution
Lower Elementary Attribute Work with Task Cards
Square Root Patterns

Upper Elementary

Constructing 3D Archimedean Solids
Constructing 3D Compound Polyhedra
Constructing 3D Kepler-Poinsot Polyhedra
Constructing 3D Platonic Solids
Constructing 3D Pyramids
Constructing 3D Uniform Polyhedra
Geometry with Tangrams and Pattern Blocks
Deriving the Area of Geometric Figures
Understanding Geometric Constructions
Upper Elementary Attribute Task Cards
Upper Elementary Area Task Cards
Upper Elementary Volume Task Cards
Upper Elementary Geometry Task Cards

Volume Answer Key

Volume of a Rectangular Prism

Card 1:	Varies	Varies	Varies
	Volume	$\mathrm{V}=\mathrm{LxHxW}$	Not Known
Card 2:	Varies	Varies	Varies
	Volume	$\mathrm{V}=\mathrm{LxHxW}$	Not Known
Card 3:	12 ft	8 ft	26 ft
	Volume	$\mathrm{V}=\mathrm{LxHxW}$	Not Known
Card 4:	$6 \mathrm{in}^{2}$	12in	Not Known
	Volume	$\mathrm{V}=\mathrm{LxHxW}$	$32 \mathrm{in}{ }^{2}$
Card 5:	7ft. x 14ft	$7 \mathrm{ft} \times 6$ in	6 in
	Volume	$\mathrm{V}=\mathrm{LxHxW}$	Not Known

Card 6:	6in	6in $\times 6$ in	Not Known
	Volume	$\mathrm{V}=\mathrm{A}_{b} \mathrm{~h}$	12 in

Card 7: $\quad 75 \mathrm{ft} \times 80 \mathrm{ft}$
$\frac{75 f t x 80 f t}{2}$
125ft

Volume

Card 8:	$4 \mathrm{M} \times 16$	$\mathrm{~V}=\mathrm{LxWxH}$	16 m
	Volume	$\mathrm{V}=\mathrm{A}_{\mathrm{b}} \mathrm{h}$	Not Known
Card 9:	$4.5 \mathrm{ft} \times 4.5 \mathrm{in}$	5in $\times 4.5 \mathrm{in}$	4.5 ft
	Volume	$\mathrm{V}=\mathrm{A}_{\mathrm{b}} \mathrm{h}$	Not Known

Volume of any Regular Prism:

Card 1:	Not Known	$\frac{10 \times 8}{2}$	40 cm
	Volume	Area of base x height	$\mathrm{V}=\mathrm{LxHxW}$
Card 2:	Not Known	$\frac{160 \times 10}{2}$	50 cm
	Volume	Area of base x height	$\frac{\text { base } \mathrm{x} \text { height }}{2}$
Card 3:	Not Known	$96 \mathrm{ft}{ }^{2}$	4ft
	Volume	Area of base x height	$\frac{P a}{2}$
Card 4:	Not Known	$\frac{(B+b) h}{2}$	$21 / 2$
	Volume of 2 Planter Boxes	Area of base x height	$\frac{b h}{2}$
Card 5:	Not Known	$\frac{D d}{2}$	$2^{1 / 2}$
	Volume	Area of base x height	$\frac{P a}{2}$
Card 6:	$2.25 \mathrm{~cm}^{3}$	$1.5 \mathrm{~cm}^{2}$	Not Known
	Height	$\mathrm{H}=\frac{V}{A b}$	$=\frac{2.25 \mathrm{~cm}^{3}}{1.5 \mathrm{~cm}^{2}}$
Card 7:	Not Known	$\frac{D d}{2}$	12ft
	Volume	Area of base x height	LxWxH

Card 8:	900,000 yds^{3}	$\frac{D d}{2}$	Not Kn
	Height	$\mathrm{H}=\frac{\text { Volume }}{\text { Area of base }}$	Area of
Card 9:	Not Known	$112,500 \mathrm{ft}^{2}$	100 ft
	Volume	$\mathrm{V}=\mathrm{A}_{\mathrm{b}}(\mathrm{H})$	$\frac{b d}{2}$

Volume of Pyramid:

Card 1:	Not Known	$(120 \mathrm{ft} .)^{2}$	110ft
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	210(110)
Card 2:	Not Known	$(14 \mathrm{~cm})^{2}$	8 cm
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	5 cm
Card 3:	Not Known	$(2 \mathrm{ft})^{2}$	4ft
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	Dec. 25
Card 4:	Not Known	$4 \mathrm{ft}^{2}$	8 ft
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	$32 \mathrm{ft}^{2}$
Card 5:	Not Known	$12 \mathrm{in}^{2}$	16 ft
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	$192 \mathrm{in}^{2}$

Card 6:	$1215 \mathrm{~cm}^{3}$	$9 \mathrm{~cm}^{2}$	Not Known
	Height	$\mathrm{H}=\frac{3 V}{A b}$	$\mathrm{~V}=\frac{(A b) h}{3}$
Card 7:	Not Known	225 cubits 2	35 cubits
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	225×35

Card 8:	$1568 \mathrm{~cm}^{3}$	Not Known	8 cm
	Area of base	$\mathrm{A}_{\mathrm{b}}=\frac{3 v}{h}$	Volume
Card 9:	Not Known	$13 \mathrm{in} \times 22 \mathrm{in}$	36 in
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	$2280 \mathrm{sq} . \mathrm{in}$.

Volume of an Oblique Square Pyramid

Card 1:	Not Known	Ab
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$

Card 2:	$\mathrm{Ab}=\mathrm{S}^{2}$	27 blocks
Volume	$\mathrm{V}=\frac{(A b) h}{3}$	$\mathrm{~V}=\frac{P a}{3}$

Card 3:	Not Known	$\mathrm{Ab}=\mathrm{S}^{2}$	4Oft
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	$\mathrm{~V}=\frac{b h}{3}$
Card 4:	$100 \mathrm{in}^{3}$	Not Known	12 in
	Area of the Base	$\sqrt{a}=\frac{3(100)}{12}$	$\mathrm{~V}=\frac{(A b) h}{3}$

Card 5:	Not Known	$\mathrm{A}_{\mathrm{b}}=\mathrm{S}^{2}$
	$\mathrm{~V}=\frac{(A b) h}{3}$	
	Volume	$V=\frac{s^{2}}{3}$

Card 6: $1296 \mathrm{in}^{3}$	$324 \mathrm{in}^{2}$	Not Known	
	Height	$\frac{3(1296)}{324}$	$\mathrm{~V}=\frac{(A b) h}{3}$
Card 7:	$963333333.3 \mathrm{ft}^{3}$	$\mathrm{~A}_{\mathrm{b}}(1700 \mathrm{ft})^{2}$	Not Known
	Height	$\mathrm{H}=\frac{3(V)}{A b}$	500ft

$\left.\begin{array}{lll}\text { Card 8: } & \text { Not Known } & 3 \mathrm{~cm}^{2}\end{array}\right] 16 \mathrm{~cm}$.

Card 9: $6 \mathrm{in}^{3} \quad$ Not Known \quad in Area of base and length of side base $\quad \mathrm{B}=\frac{3(V)}{h} \quad 5$

Volume of a Cylinder

Card 1:	Not Known	$\pi 6^{2}$	18 in
	Volume	$\mathrm{V}=\mathrm{A}_{b} \mathrm{~h}$	12

Card 2:	Not Known	$\pi\left(\frac{7}{2}\right)^{2}$
	$\mathrm{~V}=\mathrm{A}_{\mathrm{b}} \mathrm{h}$	15
	Volume	7

| Card 3: | $13.5 \mathrm{in}^{3}$ | $\pi\left(\frac{3.5}{2}\right)^{2}$ |
| :--- | :--- | :--- | Not Known

Card 4:	Not Known	$\pi 3^{2}$
	Volume	$\mathrm{V}=\mathrm{A}_{b} \mathrm{~h}$

Card 5:	Not Known	$\pi\left(\frac{6}{2}\right)^{2}$
	$\mathrm{~V}=\mathrm{A}_{\mathrm{b}} \mathrm{h}$	8 cm
	Volume	$6 \mathrm{~cm} \times 8 \mathrm{~cm}$

Card 6:	Not Known	$\pi 6^{2}$	25 ft
	Volume	$\mathrm{V}=\mathrm{A}_{\mathrm{b}} \mathrm{h}$	$\mathrm{h}=\frac{V}{A b}$
Card 7:	Not Known	$\pi 10^{2}$	12 cm
	Volume	$\mathrm{V}=\mathrm{A}_{\mathrm{b}} \mathrm{h}$	20 cm

Card 8:	Not Known	$\pi 21^{2}$	16 in
	Volume	$\mathrm{V}=\mathrm{A}_{b} \mathrm{~h}$	42 in
Card 9:	$942 \mathrm{~cm}^{3}$	$\pi 5^{2}$	Not Known
	Height	$\mathrm{h}=\frac{V}{A b}$	$\mathrm{~V}=\mathrm{A}_{b} \mathrm{~h}$

Volume of a Sphere:

Card 1:	Not Known	$\frac{6 c m}{2}$	3.15
	Volume	$\frac{4 \pi r^{3}}{3}$	18 cm
Card 2 :	Not Known	$\frac{2300}{2}$	3.14
	Volume	$\frac{4 \pi r^{3}}{3}$	12
Card 3:	Not Known	7	3.14
	Volume	$\frac{4 \pi r^{3}}{3}$	43.96
Card 4:	Not Known	$\frac{4880}{2}$	3.14
	Volume	$\frac{4 \pi r^{3}}{3}$	15,330 km
Card 5:	Not Known	$\frac{150 f t}{2}$	3.14
	Volume	$\frac{4 \pi r^{3}}{3}$	75 ft
Card 6:	Not Known	15 cm	3.14
	Volume	$\frac{4 \pi r^{3}}{3}$	94.20 cm
Card 7:	Not Known	6 cm	3.14

Volume
$\begin{array}{lll}\text { Card 8: } & \text { Not Known } & \frac{1}{2} \frac{(56.52)}{3.14} \\ & \text { Volume } & \frac{4 \pi r^{3}}{3} \\ & & 3.14\end{array}$

Card $9:$	Not Known	16 ft	3.14
	Volume	$\frac{4 \pi r^{3}}{3}$	πr^{2}

Volume of a Cone:

Card 1:	Not Known	$78.5 \mathrm{~cm}^{2}$	6 cm
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	24
Card 2:	Not Known	πr^{2}	10 cm
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	31
Card 3:	Not Known	$\pi 8^{2}$	6ft
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	26
Card 4:	Not Known	πr^{2}	12 cm
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	$V=S^{3}$
Card 5:	Not Known	Varies	Varies
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	$\mathrm{V}=\frac{b h}{2}$
Card 6:	$1105.28 \mathrm{~cm}^{3}$	$50.24 \mathrm{~cm}^{2}$	Not Known
	Height	$\mathrm{h}=\frac{3 v}{b}$	$\mathrm{V}=\frac{(A b) h}{3}$
Card 7:	Not Known	πr^{2}	3ft
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	$40 m^{2}$

Card 8:	Not Known	10 in	
	Area of base in^{3}	$\mathrm{~b}=\frac{3 v}{h}$	$\mathrm{~V}=\frac{(A b) h}{3}$
Card 9:	Not Known	$\pi \mathrm{r}^{2}$	12 cm
	Volume	$\mathrm{V}=\frac{(A b) h}{3}$	$\mathrm{~h}=\frac{A b}{b}$

Surface Area of a Cylinder:

Card 1:	Not Known	$\pi(1.25)^{2}$	4(2.5 \quad)
	Surface Area	$\mathrm{AA}_{\text {circle }}+\mathrm{A}_{\text {rectangle }}$	2.5×4
Card 2:	Not Known	$\pi\left(\frac{12}{2}\right)^{2}$	16(12r)
	Surface Area	$\mathrm{AA}_{\text {circle }}+\mathrm{A}_{\text {rectangle }}$	16×12
Card 3:	Not Known	$\pi\left(\frac{10}{2}\right)^{2}$	22(10 $)$
	Surface Area	$\mathbf{2 A}_{\text {circle }}+\mathrm{A}_{\text {rectangle }}$	10×22
Card 4:	Not Known	$\pi\left(\frac{5}{2}\right)^{2}$	$\frac{5 \pi(12)}{2}$
Card 5:	Not Known	$\pi\left(\frac{4}{2}\right)^{2}$	$\frac{4 \pi(8)}{2}$
	Surface Area	$\mathrm{SA}=\frac{\mathrm{lh}+\mathrm{Cr}}{2}$	4 in $x 8$ in
Card 6:	Not Known	$\pi\left(\frac{3.5}{2}\right)^{2}$	$\frac{5 \pi(15)}{2}$
	Surface Area	$S A=\frac{1 \mathrm{~h}+\mathrm{Cr}}{2}$	3.5(15)
Card 7:	Not Known	9 cm	$\frac{9}{2}$
	Surface Area	$4 \pi r^{2}$	9π

Card 8:
Not Known
6 cm
$\frac{6}{2}$
Surface Area $4 \pi r^{2}$ base
Card 9:
Not Known
40,000 km
$r=\frac{40,000}{2 \pi}$
Surface Area
$4 \pi r^{2}$
$\mathrm{b}=\frac{A}{h}$

ETC Montessori ${ }^{\circledR}$

(877) 409-2929
www.ETCmontessoriOnline.com

