Instructions and Sequence for Using the Atom Board

Bohr's atomic model is a representation of protons, neutrons, and electrons and their relationships within an atom.

Because these particles are so small and so far apart, it would be impossible to diagram an atom and still have the particles visible on your board. For this reason, the models you build here are intended only to illustrate the overall structure of the atom, without giving an accurate representation of the relative scale of the particles within the atom. The following example may help in showing the relative sizes and distances of the parts on an atom. If the nucleus were the size of a basketball, the nearest electron would be about 8 miles away. (Stanton and Stinson $1^{\text {st }}$ edition, p. 8)

As you explore your board you will notice that the center is constructed to hold a small bowl (not supplied). This bowl will hold the particles that make up the nucleus of the atom. Immediately outside the nucleus, you will notice the first ring of electrons, followed by successive rings. These rings are also known as electron shells. Electron shells are named using letters, beginning with K . The first shell is ring K, and it may contain one or two electrons. The next electron shell is known as shell L and it may between one and eight electrons. The ring immediately after L would be named M. This shell can contain up to 18 electrons. Electron shell N may contain up to 32 electrons.

Particles:

The nucleus is made up of protons and neutrons. We have provided two sets of colored stones (30 each) to represent these particles. Usually protons are colored red, while neutrons are colored blue. Electrons are colored white. If you were constructing the atom of the element Carbon, you would begin by taking out the card that contains the information on that element. Looking at the card, you would notice that the atomic number for Carbon is 6 . A stable Carbon atom would contain 6 of each of the atom particles: 6 protons, 6 neutrons, and 6 electrons.

The atom board is designed to allow your students to construct atoms for all the elements on the periodic table and most of their isotopes.

From the Periodic table curriculum (ELC-4050) and the Upper Elementary Chemistry Curriculum (ELC4052A) the students should know the following terms:

Atomic Number
Atomic Mass
Group Number
Period Number
The atomic number is the numberyou will be concentrating on. Remind the students that the atomic number is the number of protons found in the nucleus of an atom. Usually it is represented by the letter Z. The atomic number is a unique identifier of a chemical element. That means that each element on the periodic table will have its very own atomic number. No two elements
have the same atomic number. You may also want to remind them that in an atom of
© Copyright 2008 ETC Press Inc.
neutral charge, the atomic number is equal to the number of electrons.

Be very careful not to confuse the atomic number with the mass number. The mass number is usually represented by the letter A and is the total number of protons and neutrons in the nucleus of the atom. You will notice that the atomic mass number is also located on the cards and it usually is a number that is about twice that of the atomic number.

Presentation:

Begin by selecting an atom card. For all practical purposes of this presentation, we will assume that you have chosen the Carbon (C) element card. The atomic number of the element is 6 ; therefore, you know that the nucleus of this element will have 6 protons. In the following you will find the sequence for a regular presentation as well as that for the more advanced students who are being introduced to isotopes. Isotope presentation will be in italics.

Begin by placing one proton in the nucleus.

Say: "You have the nucleus of a Hydrogen atom, but to balance the atom you must add 1 electron."
Place one electron in the K shell and say: "We now have a balanced Hydrogen atom. To change to a different element, we must add or remove protons. We want to create a Carbon atom so we will add protons."
(For isotope presentations say: "We now have a balanced Hydrogen atom. This element has 0 isotopes. To create an isotope, we must add or remove neutrons. Since this element does not have any neutrons, we cannot create any isotopes.")

Place a second proton in the nucleus.

Say: "We now have enough protons for a Helium atom." Show the Helium atom on the periodic table and say "But to make it a regular and stable atom, we must add 2 neutrons."

Add one neutron at a time in the nucleus.
(For isotope presentation, add one neutron and say: "We now have the nucleus of a Helium 3 isotope atom, but to balance the atom, we must add one 1 electron."

Add one electron and say: We now have a balanced Helium 3 isotope atom. To change to a different element we must add or remove protons. This element has 1 isotope. To create an isotope, we must add or remove neutrons."

Place a second neutron in the nucleus and say: "We now have a balance Helium atom."

Say: "We now have the nucleus of a Helium atom, but to balance the atom, we must add 1 electron."

Place a second electron in shell K .
© Copyright 2008 ETC Press Inc.
(You will notice that shell K has two indentations that will allow you to place the electrons there. If a student asks why the indentations are placed where they are, make sure you help them understand that electrons carry a negative charge and because of where the shell is located in connection to the nucleus, the two electrons MUST have that distance between them. They are like magnets when you try to bring them together.)

Continue by placing a third proton in the nucleus.
Say: "We now have enough protons for a Lithium atom, but to make it a regular and stable atom, we must add 1 neutron."

Place a third neutron in the nucleus.

Say: "We now have the nucleus of a Lithium atom, but to balance the atom, we must add 1 electron."
(For isotope presentation say : "We now have the nucleus of a Lithium 6 isotope atom, but to balance the atom, we must add 1 electron.")

Since there are no more open spots for electrons in shell K, you must place the next electron in one of the open spots found in shell L.

Say: "We now have a balanced Lithium atom. To change to a different element we will continue to add protons."
(For isotope presentations say: "We now have a balanced Lithium 6 isotope atom. This element has 1 isotope. To create an isotope, we can add or remove neutrons."
Add an additional neutron and say: "We now have a balanced Lithium atom. To change to a different element we will continue to add protons.")

Add one more proton.

Say: "We now have the number of protons to make a Beryllium atom, but to balance the nucleus, we will need to add another neutron."

Add one more neutron.

Say: "We now have enough protons and neutrons for a balanced Beryllium atom nucleus. To balance the atom, we must add one more electron."

Add one more electron.

Say: "We now have a balanced Beryllium atom. We will continue to add particles so that we can make a Carbon atom."
(For isotope presentations add one more proton and say: "We now have enough protons for a Boron atom, but to make it a regular and stable atom, we must add 1 more neutron.")

Add one more proton and one more neutron

Say: "We now have the nucleus of a Boron atom, but to balance the atom, we must add 1 more electron."
(For isotope presentations say: "We now have the nucleus of a Boron 10 isotope atom, but to balance the atom we must add 1 more electron.")

Add one more electron.

Say: "We now have a balanced Boron atom. To change it to a different element, we must add or remove protons."
(For isotope presentations say: "We now have a balanced Boron 10 isotope atom. To change to a different element, we must add or remove protons. This element has 1 isotope. To create an isotope, we can add or remove neutrons."

Add one more Neutron and say: "We now have a balanced Boron atom.")

Add one more proton.

Say: "We now have the nucleus of a Carbon atom but to balance it, we must add one more neutron and one more electron."
(For isotope presentations say: "We now have the nucleus of a Carbon 11 isotope atom, but to balance the atom, we must add 1 electron.")

Add one more electron and one more neutron.

Say: "We now have a balanced Carbon atom. "
(For isotope presentation add only 1 electron and say: "We now have a balanced Carbon 11 isotope atom. This element has 4 isotopes. To create an isotope, we can add or remove neutrons.

Add one more neutron and say: "We now have a balanced Carbon atom. This element has 4 isotopes. "

Add one more neutron. Count the particles in the nucleus (1, 2....13) and say: "We now have a balanced Carbon 13 isotope atom. "

Add one more neutron. Count the particles in the nucleus (1, $2 . . .14$) and say: "We now have a balanced Carbon 14 isotope atom."

Add one more neutron. Count the particles in the nucleus (1, 2 ... 15) and say: "We now have a balanced Carbon 15 isotope atom.")

Isotopes:

There are 80 known elements which have at least one stable isotope. Currently there are 250 known stable isotopes. The following list shows all of the known stable isotopes.

1. Hydrogen-1
2. Hydrogen-2
3. Helium-3
4. Helium-4
5. Lithium-6
6. Lithium-7
7. Beryllium-9
8. Boron-10
9. Boron-11
10. Carbon-12
11. Carbon-13
12. Nitrogen-14
13. Nitrogen-15
14. Oxygen-16
15. Oxygen-17
16. Oxygen-18
17. Fluorine-19
18. Neon-20
19. Neon-21
20. Neon-22
21. Sodium- 23
22. Magnesium- 24
23. Magnesium-25
24. Magnesium-26
25. Aluminium-27
26. Silicon- 28
27. Silicon- 29
28. Silicon-30
29. Phosphorus-31
30. Sulfur- 32
31. Sulfur- 33
32. Sulfur-34
33. Sulfur-36
34. Chlorine- 35
35. Chlorine-37
36. Argon-36
37. Argon-38
38. Argon-40
39. Potassium-39
40. Potassium-41
41. Calcium-40
42. Calcium-42
43. Calcium-43
44. Calcium-44
45. Scandium-45
46. Titanium-46
47. Titanium-47
48. Titanium-48
49. Titanium-49
50. Titanium-50
51. Vanadium-51
52. Chromium-50
53. Chromium-52
54. Chromium-53
55. Chromium-54
56. Manganese-55
57. Iron-54
58. Iron-56
59. Iron-57
60. Iron-58
61. Cobalt-59
62. Nickel-58
63. Nickel-60
64. Nickel-61
65. Nickel-62
66. Nickel-64
67. Copper-63
68. Copper-65
69. Zinc-64
70. Zinc-66
71. Zinc-67
72. Zinc-68
73. Zinc-70
74. Gallium-69
75. Gallium-71
76. Germanium-70
77. Germanium-72
78. Germanium-73
79. Germanium-74
80. Arsenic-75
81. Selenium-74
82. Selenium-76
83. Selenium-77
84. Selenium-78
85. Selenium-80
86. Bromine-79
87. Bromine-81
88. Krypton-78
89. Krypton-80
90. Krypton-82
91. Krypton-83
92. Krypton-84
93. Krypton-86
94. Rubidium-85
95. Strontium-84
96. Strontium-86
97. Strontium-87
98. Strontium-88
99. Yttrium-89
100. Zirconium-90
101. Zirconium-91
102. Zirconium-92
103. Zirconium-94
104. Niobium-93
105. Molybdenum-92
106. Molybdenum-94
107. Molybdenum-95
108. Molybdenum-96
109. Molybdenum-97
110. Molybdenum-98

Technetium - No stable isotopes
111. Ruthenium-96
112. Ruthenium-98
113. Ruthenium-99
114. Ruthenium- 100
115. Ruthenium-101
116. Ruthenium-102
117. Ruthenium-104
118. Rhodium-103
119. Palladium-102
120. Palladium-104
121. Palladium-105
122. Palladium-106
123. Palladium-108
124. Palladium-110
125. Silver-107
126. Silver-109
127. Cadmium-106
128. Cadmium-108
129. Cadmium-110
130. Cadmium-111
131. Cadmium-112
132. Cadmium-114
133. Indium-113
134. Tin-112
135. Tin-114
136. Tin-115
137. Tin-116
138. Tin-117
139. Tin-118
140. Tin-119
141. Tin-120
142. Tin-122
143. Tin-124
144. Antimony-121
145. Antimony-123
146. Tellurium-122
147. Tellurium-123
148. Tellurium-124
149. Tellurium-126
150. Iodine-127
151. Xenon-124
152. Xenon-126
153. Xenon-128
154. Xenon-129
155. Xenon-130
156. Xenon-131
157. Xenon-132
158. Xenon-134
159. Xenon-136
160. Caesium-133
161. Barium-132
162. Barium-134
163. Barium-135
164. Barium-136
165. Barium-137
166. Barium-138
167. Lanthanum-139
168. Cerium-136
169. Cerium-138
170. Cerium-140
171. Cerium-142
172. Praseodymium-141
173. Neodymium-142
174. Neodymium-143
175. Neodymium-145
176. Neodymium-146
177. Neodymium-148

Promethium - No stable isotopes
178. Samarium-144
179. Samarium-150
180. Samarium-152
181. Samarium-154
182. Europium-153
183. Gadolinium-154
184. Gadolinium-155
185. Gadolinium-156
186. Gadolinium-157
187. Gadolinium-158
188. Gadolinium-160
189. Terbium-159
190. Dysprosium-156
191. Dysprosium-158
192. Dysprosium-160
193. Dysprosium-161
194. Dysprosium-162
195. Dysprosium-163
196. Dysprosium-164
197. Holmium-165
198. Erbium-162
199. Erbium-164
200. Erbium-166
201. Erbium-167
202. Erbium-168
203. Erbium-170
204. Thulium-169

Ions

An ion is an atom which has lost or gained one or more electrons from the outermost shell. A negatively charged ion has more electrons in its electron shells than it has protons in the nucleus. Such an ion is known as an anion.

A positively charged ion is an atom that has less electrons than it has protons. Such an ion is known as a cation.

Using the atom board, you can show how and why an atom might have a positive charge or a negative charge by adding or removing electrons. Remember, if you change the number of protons you actually change the element. The atom doesn't become positively charged by having gaining more protons. Instead, it becomes positively charged by losing electrons.

Following is a list of common ions. Each ion is symbolized by the element's formula, a superscript number, and a positive (+) or negative (-) symbol. The superscript number symbolizes the amount of charge that element has while the (+) or (-) symbolizes whetear it is a cation or an anion.

Common Cations

Common Name
 Simple Cations

Aluminium
Barium
Beryllium
Cadmium
Caesium
Calcium
Chromium(II)
Chromium(III)
Chromium(VI)
Cobalt(II)
Cobalt(III)
Copper(I)
Copper(II)
Copper(III)
Gallium
Helium
Hydrogen
Iron(II)
Iron(III)
Lead(II)
Lead(IV)
Lithium
Magnesium
Manganese(II)

Formula

Al^{3+}
Ba^{2+}
Be^{2+}
Cd^{2+}
Cs^{+}
Ca^{2+}
Cr^{2+}
Cr^{3+}
Cr^{6+}
Co^{2+}
Co^{3+}
Cu^{+}
Cu^{2+}
Cu^{3+}
Ga^{3+}
He^{2+}
H^{+}
Fe^{2+}
Fe^{3+}
Pb^{2+}
Pb^{4+}
Li^{+}
Mg^{2+}
Mn^{2+}

Historic Name

Chromous
Chromic
Chromyl
Cobaltous
Cobaltic
Cuprous
Cupric
(Alpha particle)
(Proton)
Ferrous
Ferric
Plumbous
Plumbic

Manganous

Manganese(III)
Manganese(IV)
Manganese(VII)
Mercury(II)
Nickel(II)
Nickel(III)
Potassium
Silver
Sodium
Strontium
Tin(II)
Tin(IV)
Zinc

Formal Name

Simple Anions
Arsenide
Azide
Bromide
Chloride
Fluoride
Hydride
Iodide
Nitride
Oxide
Phosphide
Sulfide
Peroxide

Mn^{3+}	Manganic
Mn^{4+}	Manganyl
Mn^{7+}	
Hg^{2+}	Mercuric
Ni^{2+}	Nickelous
Ni^{3+}	Nickelic
K^{+}	
Ag^{+}	
Na^{+}	
Sr^{2+}	
Sn^{2+}	Stannous
Sn^{4+}	Stannic
Zn^{2+}	

Common Anions

Alt. Name
Manganic
Manganyl
Mercuric
Nickelous
Nickelic

Stannous
Stannic

者
As^{3-}
$\mathrm{N}_{3}{ }^{-}$
Br^{-}
Cl^{-}
F^{-}
H^{-}
I-
N^{3-}
O^{2-}
P^{3-}
S^{2-}
$\mathrm{O}_{2}{ }^{2-}$

Bonds

Chemical bonds are the processes which are responsible for the attractive forces between atoms and various other molecules. Bonds create stability between atoms and ultimately through them we have chemical compounds. Without chemical bonds there wouldn't be any molecules and none of the things that we see around us would exist.

Following are the descriptions of the most common bonds that students will most often find and use. However, we are mentioning other types of bonds that are known to chemists today. These other types of bonds are supplied only as examples. If your students wish to explore more of these ideas, encourage them to do so.

Covalent bonds: Found within most organic compounds, they are characterized by the sharing of pairs of electrons between atoms

Polar covalent bonds: have characteristics of both covalent bonds and ionic bonds. They exist because of the slight differences in polarity that exist in molecules.

Ionic bonds: can often be found between metal and non-metal ions. Ionic bonds depend on the ionic charge that various elemental atoms might have. In short this type of bond is formed by the attraction between two oppositely charged ions.

Other types of bonds:
Coordinate covalent bonds

Bent bonds

Three and four center bonds

One and three electron bonds

Aromatic bonds

Banana bonds

Metallic bonds

